PLANO DE ENSINO

FICHA Nº 2 (variável)

Disciplina: Circuitos eletrônicos lineares	Código: TE054	
Natureza: (X) obrigatória () optativa	Semestral (X) Anual () Modular ()	
Pré-requisito:	Co-requisito:	
Modalidade: (X) Presencial () EaD () 20% EaD		
C.H. Semestral Total: 60h C.H. Anual Total: C.H. Modular Total:		
PD: 60 LB: 00 CP: 00 ES: 00 OR: 00 C.H. Semanal: 4h		

EMENTA (Unidades didáticas)

Amplificadores com múltiplos estágios. Amplificadores realimentados. Amplificadores de potência. Filtros. Osciladores senoidais.

PROGRAMA (itens de cada unidade didática)

Data	Aula	Conteúdo
1/8	Aula 1	Apresentação. Revisão de eletrônica básica.
3/8	Aula 2	Introdução a amplificadores. Fonte comum.
8/8	Aula 3	Fonte comum. Fonte comum degenerada. Dreno comum.
10/8	Aula 4	Porta comum. Amplificadores de múltiplos estágios.
22/8	Aula 5	Amplificadores diferenciais.
24/8	Aula 6	Espelhos de corrente.
29/8	Aula 7	Carga ativa. Amplificadores operacionais de tensão e de transcondutância.
31/8	Aula 8	Referência de tensão (bandgap).
5/9	Aula 9	Introdução a filtros. Ressonância.
12/9	Aula 10	Prova 1
14/9	Aula 11	Discussão da prova 1. Filtros de primeira ordem. Filtros biquadráticos.
19/9	Aula 12	Filtros ativos (integrador com amp-op).
21/9	Aula 13	Filtros ativos (integrador com amp-op e Gm-C). Capacitores chaveados.
26/9	Aula 14	Aproximações. Síntese.
28/9	Aula 15	Introdução a realimentação negativa. Tensão-Tensão.
5/10	Aula 16	Tensão-Tensão. Corrente-corrente. Corrente-tensão. Tensão-corrente.
10/10	Aula 17	Exemplos de realimentação.
17/10	Aula 18	Estabilidade.
19/10	Aula 19	Casamento de impedâncias.
24/10	Aula 20	Prova 2
26/10	Aula 21	Discussão da prova 2. Casamento de impedâncias.
31/10	Aula 22	Parâmetros Z, Y e S. Ganho de potência.
7/11	Aula 23	Distorção. Estabilidade.
9/11	Aula 24	Ruído. LNAs.
14/11	Aula 25	LNAs. Introdução a PAs.
16/11	Aula 26	Excursão de sinal em PAs.
21/11	Aula 27	Classes de PAs. PAs em paralelo.
23/11	Aula 28	Osciladores.
28/11	Aula 29	Misturadores.
30/11	Aula 30	Prova 3
12/12		Exame final

OBJETIVO GERAL

Análise e projeto de circuitos eletrônicos como amplificadores, osciladores e filtros.

OBJETIVO ESPECÍFICO

Análise e projeto de circuitos eletrônicos de alta frequência a base de MOSFETs.

PLANO DE ENSINO

FICHA Nº 2 (variável)

PROCEDIMENTOS DIDÁTICOS

Aulas expositivas utilizando projetor multimídia e quadro.

Resolução de exercícios.

Exercícios de simulação.

FORMAS DE AVALIAÇÃO

A avaliação será composta de 3 provas escritas. A média semestral será a média aritmética das 3 provas.

À nota de cada prova será acrescida a nota de exercícios a serem entregues pelos alunos com um valor total máximo de 15 pontos.

As provas serão individuais, não sendo permitido aos alunos:

- ocupar lugar diferente daquele especificado pelo professor responsável pela aplicação da prova;
- ausentar-se da sala de aula durante a realização da prova;
- fornecer ou solicitar informações a outros alunos;
- consultar anotações ou qualquer material não fornecido pelo professor especificamente para o exame;
- utilizar quaisquer equipamentos eletrônicos, incluindo calculadoras.

Caso o professor observe desrespeito a alguma destas regras ou alguma tentativa de fraude, será atribuída nota zero ao aluno na disciplina.

BIBLIOGRAFIA BÁSICA

RAZAVI, Behzad. Fundamentos de microeletrônica. Rio de Janeiro: LTC, 2010. 728p., il. Inclui referências e índice. ISBN 9788521617327 (broch.).

SEDRA, Adel S; SMITH, Kenneth C. Microeletronica. 5. ed. São Paulo: Pearson / Prentice Hall, c2007. xiv, 848 p., il. Inclui bibliografia e indice. ISBN 9788576050223 (broch.).

BOYLESTAD, Robert L.; NASHELSKY, Louis. Dispositivos eletrônicos e teoria de circuitos. 8. ed. São Paulo: Pearson Education do Brasil, c2004. xviii, 672p., il., tabs. Apêndice. ISBN 8587918222 (Broch.).

BIBLIOGRAFIA COMPLEMENTAR

Richard C. Jaeger, Travis N. Blalock, Microelectronic circuit design — 4th ed. McGraw-Hill, 2011.

HORENSTEIN, Mark N. Microeletronica circuitos & dispositivos. Rio de Janeiro: Prentice-Hall do Brasil, 1996. xv, 689 p., il. Inclui bibliografia e indice. ISBN 8570540485 (broch.).

MILLMAN, Jacob; GRABEL, Arvin. Microelectronica. 2. ed. Lisboa: McGraw-Hill, 1991-1992. 2v. (1134 p.), il. Inclui bibliografia e apendices.

LUDWIG, Reinhold; BRETCHKO, Pavel. RF circuit design: theory and applications. Upper Saddle River, NJ: Prentice-Hall, c2000. xiv, 642 p., il, + CD-ROM. Inclui referencias bibliográficas e índice. ISBN 0130953237 (enc.).

GRAY, Paul R.; MEYER, Robert G. Analysis and design of analog integrated circuits. 3rd. ed. New York: J. Wiley, c1993. 792p., il. ISBN 0471574953 (enc.).

Professor da Disciplina: Bernardo Leite

Legenda:

Conforme Resolução 15/10-CEPE: PD- Padrão LB – Laboratório CP – Campo ES – Estágio OR - Orientada