

Ministério da Educação UNIVERSIDADE FEDERAL DO PARANÁ Setor de Tecnologia......

Coordenação do Curso de ou Departamento de Engenharia Elétrica.....

Ficha 2

Disciplina: Cá	ara EE						Código: TE312		
Natureza: (x) Obrigatória () Optativa		(x) Semestral () Anual () Modular							
Pré-requisito: Não há		Co-requisito: Modalidade: (x) Presencial () Totalmo					ente EaD () % EaD*		
CH Total: 60 CH semanal: 04	Padrão (PD): 60		Laboratório (LB): 0		Campo (CP): 0	Estágio (ES): 0	Orientada (OR): 0	Prática Específica (PE): 0	Estágio de Formação Pedagógica (EFP):
					•	•	•	•	•

EMENTA

Integração múltipla. Cálculo vetorial. Teoremas de Green, Gauss e Stokes. Tópicos de Cálculo.

PROGRAMA

Integrais duplas e triplas: definições. Cálculo por meio de integrais repetidas. Propriedades das integrais duplas e triplas. Mudança de variáveis na integração: emprego de coordenadas polares, cilíndricas e esféricas. Aplicações das integrais duplas e triplas.

Cálculo de volumes, massas, momentos estáticos, centros de massa, momentos de inércia.

Funções vetoriais: definição. Limite, continuidade e derivação.

Curvas de IR² e IR³: parametrização. Vetor tangente. Comprimento de arco. Formula de Frenet, curvatura e torção. Velocidade e aceleração.

Integrais de linha: definição. Cálculo. Principais propriedades. Teorema de Green. Aplicações. Integrais de linha independentes do caminho: caracterização de campos conservativos.

Campos escalares e vetoriais: definições. Derivada direcional, gradiente, divergência, rotacional, laplaciano.

Superfícies em IR³: superfícies de nível. Parametrização de uma superfície. Plano tangente e reta normal. Primeira forma quadrática. Área de uma superfície. Superfícies orientáveis.

Integrais de superfícies: definição. Cálculo e principais propriedades. Aplicações.

Teorema da divergência de Gauss e teorema de Stokes: enunciados dos teoremas. Aplicações.

OBJETIVO GERAL

Proporcionar ao estudante a oportunidade de adquirir habilidades matemáticas e os principais elementos e resultados do cálculo diferencial e integral de funções de duas e três variáveis, incluindo aplicações à teoria de campos vetoriais. Conhecer funções e equações matemáticas que governam fenômenos físicos típicos encontrados em engenharia.

OBJETIVO ESPECÍFICO

Compreender e representar curvas e superfícies no espaço através de funções vetoriais.

Compreender e aplicar conceitos e os principais teoremas da teoria de Cálculo Vetorial.

Compreender e aplicar conceitos e resultados da teoria de séries numéricas e séries de potência.

Representar funções elementares através de séries de potência.

Aplicar séries de potência para resolução de integrais.

PROCEDIMENTOS DIDÁTICOS

A disciplina será desenvolvida por meio de aulas semanais **assíncronas** por 3 dias na semana (2ª., 4ª. e 6ª.) a serem disponibilizadas para os participantes regularmente matriculados na disciplina, sempre às segundas-feiras antes das aulas assíncronas.

O participante terá a opção de visitar o material da aula a qualquer momento que tenha disponibilidade.

O material em Microsoft© Power-Point será disponibilizado em formato pdf para o aluno com conteúdo e exercícios. Cada semana de aula terá associada uma lista de exercícios a ser respondido pelo participante de forma individual e cujo prazo de envio ao professor responsável será de uma semana (até a próxima segunda-feira a ½ noite).

a) Sistema de comunicação:

O Ambiente Virtual de Aprendizagem (AVA) será a plataforma **Microsoft TEAMS**, disponível gratuitamente para todos os estudantes com registro ativo na UFPR. Através deste AVA serão disponibilizadas as aulas, textos auxiliares e livros de apoio serão disponibilizados no mesmo ambiente, bem como a lista de exercícios SEMANAL. Também os alunos são estimulados a buscarem material na plataforma YouTube.

b) Participação na Disciplina:

Serão cadastrados no grupo "Cálculo III para Engenharia Elétrica – TE312" da plataforma Microsoft[®] TEAMS unicamente os alunos com matrícula regularmente realizada na disciplina TE301 através da Coordenação do Curso de Engenharia Elétrica, baseado no artigo 8º da Resolução 22/21 do CEPE.

c) Tutoria:

O professor responsável pela disciplina atuará como tutor também. Os participantes serão orientados a enviar suas dúvidas por escrito para o professor através do e-mail institucional da UFPR, viviana.mariani@ufpr.br, sendo a resposta do professor-tutor realizada através do mesmo, isto é, pelo e-mail.

AULAS

- (S) Síncrona (aula online com a presença do professor)
- (A) Assíncrona (aula online sem a presença do professor o material de power-point estará disponível para o aluno estudar e tirar dúvidas na próxima aula síncrona, ou via chat na plataforma Microsoft® TEAMS a qualquer momento) As aulas assíncronas ficarão na plataforma **Microsoft® TEAMS** disponíveis desde 20/09/21 até 15/12/21.

Se necessário professor poderá enviar um e-mail para a turma marcando alguma aula síncrona para tirar dúvidas ou resolver exercícios.

Período de 20/09/2021 até 15/12/2021 detalhado na tabela que segue.

2a. feira	4a. feira	6a. feira
20/09 (A)	22/09 (A)	24/09 (A)
27/09 (A)	29/09 (A)	01/10 (A)
04/10 (A)	06/10 (A)	08/10 (A)
11/10 (A)	13/10(A)	15/10 (A)
18/10 (A)	20/10 (A)	22/10 (A)
25/06 (A)	27/10 (A)	29/10 (A)
01/11 (A)	03/11 (A)	05/11 (A)
08/11 (A)	10/11 (A)	12/11 (A)
-	17/11 (A)	19/11 (A)
22/11 (A)	24/11 (A)	26/11(A)
29/11 (A)	15/12 (S)	

Média final será divulgada até 06/12/2021 para o e-mail do aluno cadastrado no SIGA e na plataforma Microsoft[®] TEAMS através de lista com GRR do aluno. Caso a média estiver entre 40 e 70 uma prova será aplicada em 15/12/2021 com todo conteúdo de forma Síncrona das 18h30 até 20h30.

FORMAS DE AVALIAÇÃO

• Estão previstas 10 listas de exercícios (atividades), enviadas para o e-mail <u>viviana.mariani@ufpr.br</u> até a ½ noite da próxima segunda-feira em que a lista é apresentada para não ter perda de nota por atraso, cada uma delas recebendo uma nota (n_i) de 0 (zero) a 100 (cem), conforme segue:

Atividade 1: Integrais Duplas e Triplas

Atividade 2: Mudança de Variáveis nas integrais duplas e triplas

Atividade 3: Aplicações de integrais duplas e triplas

Atividade 4: Funções vetoriais de uma variável real, Parametrização de curvas

Atividade 5: Funções Vetoriais de Várias Variáveis, Campos escalares e vetoriais,

Atividade 6: Derivada Direcional, Gradiente/Divergente/Rotacional/Laplaciano

Atividade 7: Integrais de Linha de Campos Escalares e Campos Vetoriais

Atividade 8: Campos Conservativos, Teorema de Green

Atividade 9: Integrais de Superfície, Teorema de Stokes, Teorema da Divergência

- Atividades postadas fora do prazo serão penalizadas com a perda de 20% da nota a cada semana que passa. Enviar arquivo para o e-mail viviana.mariani@ufpr.br com a seguinte extensão no nome nesta ordem Calculol_nome_sobrenome_Lista1 (mudar o número da lista conforme a semana).
- A **Média Parcial** (*m*_{parcial}) será calculada pela média das notas obtidas nas atividades, através de:

$$m_{parcial} = \frac{\sum_{i=1...9} n_i}{9}$$

- A partir do cálculo da Média Parcial (mparcial), tem-se os participantes Aprovados por média no caso de $m_{Parcial} \ge 70$ e a **Média Final** (m_{final}) terá o mesmo valor da **Média Parcial** $(m_{parcial})$.
- Os participantes cuja **Média Parcial (** $m_{parcial}$ **)** seja inferior a 70 porém igual ou superior a 40 $(40 \ge m_{parcial} \ge 70)$ será dada a oportunidade de fazer uma **prova (dia 15/12/2021)**, com todo o conteúdo, ao qual será atribuída uma nota (n_{extra}) entre zero e 100. Neste caso a **Média Final** (m_{final}) (se for igual ou superior a 50 o aluno estará aprovado caso contrário reprovado) será obtida através de:

$$m_{final} = \frac{m_{parcial} + n_{extra}}{2}$$

Participantes cuja Média Parcial (mparcial) for inferir a 40 serão considerados REPROVADOS, sem direito a prova extra.

A frequência mínima para aprovação deve ser maior ou igual a 75% (a postagem das listas propostas serão computadas na frequência do aluno).

BIBLIOGRAFIA BÁSICA

Anton, H. Cálculo: um novo horizonte. Vol. 2. Porto Alegre: Bookman, 2007. Guidorizzi, H. L. Um curso de cálculo. Vol. 2 e 3. Rio de Janeiro: LTC - Livros Técnicos e Científicos, 2002. Stewart, J. Cálculo Vol. 2, 5ª. edição, São Paulo. Cengage Learning, 2006.

BIBLIOGRAFIA COMPLEMENTAR

Leithold, L. O cálculo com geometria analítica, Vol. 2. São Paulo: Harbra, 1994.

Boulos, P. Introdução ao Cálculo - Vol. II, Ed. Edgard Blucher, 1983.

Flemming, D. M., Gonçalves, M. B. Cálculo B, Editora Makron Books.

Spivak, M., Calculus, 4a. edição.

Simmons, G. F. Calculo com Geometria Analitica, Vol. 2, Editora McGraw-Hill.
Professor da Disciplina: Viviana Cocco Mariani
Assinatura:
Chefe de Departamento ou Unidade equivalente: : Luiz Antonio Belinaso
Assinatura:

*OBS: ao assinalar a opção % EAD, indicar a carga horária que será à distância.