

Ficha 2 (Resolução Nº 52/21-CEPE)

Disciplina: Laboratório de Circuitos Elétricos I								Código: TE316		
Natureza: (X) Obrigatória () Optativa			(X) Semestral () Anual () Modular							
Pré-requisito: Co		Сс	-requisito:	Modalidade: (X) Presencial () Totalmente EaD () % EaD*						
CH Total: 30 CH semanal: 02	Padrão (PD): 0		Laboratório (LB):	Campo (CP):	Estágio (ES): 0	Orientada (OR):	Prática Específica (PE): 0		Estágio de Formação Pedagógica (EFP): 0	

EMENTA (Unidade Didática)

Atividades práticas versando sobre os seguintes temas: Circuitos resistivos. Fontes dependentes ou controladas. Métodos de análise. Teoremas de rede. Elementos armazenadores de energia. Circuitos RC e RL. Circuitos de segunda ordem. Instrumentos de medidas elétricas.

PROGRAMA (itens de cada unidade didática)

- Circuitos resistivos: código de cores de resistores e associação de resistores (série e paralelo);
- Métodos de análise e Teoremas de rede: leis de Kirchhoff, princípio de superposição e teoremas de Thevenin e Norton;
- Elementos armazenadores de energia: carga e descarga de capacitor e carga e descarga de indutor;
- Circuitos de segunda ordem: circuito RLC;
- Instrumentos de medidas: multímetro e osciloscópio;
- Equipamentos Elétricos: fontes de tensão e geradores de funções.

OBJETIVO GERAL

O aluno deverá ser capaz de analisar o comportamento de circuitos elétricos simples composto de fontes constante ou variável, resistores, capacitores e indutores.

OBJETIVO ESPECÍFICO

Montar circuitos elétricos usando fontes, gerador de funções, resistores, indutores e capacitores. Realizar medidas usando multímetro e osciloscópio. Analisar os resultados e compará-los com os valores teóricos.

PROCEDIMENTOS DIDÁTICOS

Montagem e simulação de circuitos elétricos usando fontes, resistores, indutores e capacitores. Cálculo dos valores teóricos e medições das grandezas físicas envolvidas. É necessário que os alunos adquiram suas ferramentas básicas para realização das aulas. Estas ferramentas consistem em:

- 1 Alicate de corte;
- 1 Alicate de bico;
- 1 "Protoboard" (matriz de contato);
- 1 Multímetro digital;
- 4 Cabos de ligação banana-jacaré;
- 2 Ponteira para osciloscópio;
- 1 cabo BNC jacaré;
- Conjunto de fios para ligação no "protoboard";
- Componentes: resistores, indutores e capacitores.

FORMAS DE AVALIAÇÃO a) Participação Ativa nas Aulas de Laboratório + Relatórios em Equipe (40%) b) Prova Prática Individual (60%) Frequência Mínima: 75% BIBLIOGRAFIA BÁSICA (mínimo de 03 títulos) 1) Fundamentos de Circuitos Elétricos. Charles K. Alexander, Matthew N. O. Sadiku. Porto Alegre: Bookman, 2003. 2) Análise de Circuitos em Engenharia , Hayt, WH, Kemmerly, JE, Durbin, SM, 7a ed. McGrawHill, 2008. 3) Fundamentos de Análise de Circuitos Elétricos. Johnson, Hiburn e Johnson. Rio de Janeiro: Prentice-Hall do Brasil, 1994. **BIBLIOGRAFIA COMPLEMENTAR (mínimo de 05 títulos)** 1) Introdução a Análise de Circuitos. Robert L. Boylestad. Rio de Janeiro: Prentice-Hall, 1998. 2) Circuitos Elétricos. James W. Nilsson, Susan A. Riedel. Rio de Janeiro: Livros Técnicos e Científicos, 2003. 3) Circuitos Elétricos. Joseph A. Edminister. Rio de Janeiro: MacGrawHill, 1972. 4) Circuitos Elétricos. Luiz de Queiroz Orsini. São Paulo: E. Blucher; USP, 1971. 5) Circuitos Elétricos. Yaro Burian Junior. Rio de Janeiro: Almeida Neves, c1977. Professor da Disciplina: Marcelo Eduardo Pellenz Assinatura: Ficha válida a partir de janeiro de 2022 Chefe de Departamento: Luiz Antonio Belinaso Assinatura: _____

^{*} OBS: ao assinalar a opção % EAD, indicar a carga horária que será à distância.