

Ministério da Educação UNIVERSIDADE FEDERAL DO PARANÁ Setor de Tecnologia Departamento de Engenharia Elétrica

Ficha 2 (variável)

Disciplina: La	borató	Código: TE 325							
Natureza: (X) Obrigatória () Optativa		(2	X) Semestral		() Anual	() Modular			
Pré-requisito: Co		Co-r	requisito:		Modalidade: (X) Presencial ()		() Totalmente EaD()% EaD*		
CH Total: 30 CH semanal: 02	Padrão (PD): 00		Laboratório (LE	3):	Campo (CP): 0	Estágio (ES): 0	Orientada (OR):	Prática Específica (PE): 0	Estágio de Formação Pedagógica (EFP):

EMENTA (Unidade Didática)

Atividades práticas sobre os seguintes temas:

- Circuitos magnéticos;
- Transformador:
- Conversão eletromecânica de energia;
- Máquinas de corrente contínua;
- Máquinas especiais.

OBJETIVO GERAL

O aluno, ao final do semestre letivo, deve sercapaz de compreender os princípios de funcionamento e aspectos construtivos, conhecer as aplicações típicas e formas de operação de circuitos magnéticos, transformadores de energia e máquinas de corrente contínua. Além disto, o aluno deverá tercondições de avaliar através de cálculo ocomportamento de circuitos magnéticos, transformadores de energia e máquinas de corrente contínua.

OBJETIVO ESPECÍFICO

Rever conceitos básicos de eletromagnetismo de aplicação prática na Engenharia elétrica

Aplicar as leis de Ampere, Faraday e Lenz na solução de circuitos magnéticos.

Desenvolver atividades básicas com eletroímãs, transformadores e máquinas de corrente contínua.

Correlacionar os conceitos teóricos com os fenômenos de conversão vistos na prática de Engenharia Elétrica e levados ao laboratório para experimentação.

Desenvolver e aprimorar o raciocínio científico na compreensão da operação dos dispositivos de conversão de energia, principalmente transformadores e motores de corrente contínua.

PROCEDIMENTOS DIDÁTICOS

A disciplina será desenvolvida mediante aulas expositivas e práticas com montagens em todas elas ou acompanhamento de experiências onde serão apresentados os conteúdos curriculares, além da própria realização de aulas práticas em laboratórios.

Serão utilizados os seguintes recursos: quadro, notebook, projetor multimídia, notas de aula, além dos recursos de que dispõe os laboratórios do DELT: bancadas com elementos do tema da disciplina (transformador, resistores, fusíveis, acionamentos, disjuntores, contatoras, etc), varivolts, osciloscópios, geradores de função, ferramentas básicas e componentes eletrônicos.

FORMAS DE AVALIAÇÃO

A avaliação ocorrerá através de notas em relatórios técnicos decorrentes das experiências realizadas durante as aulas.

Os relatórios técnicos devem possuir introdução teórica, desenvolvimento da experiência realizada, anotação dos resultados e principalmente conclusão coesa e norteada pela comparação entre o esperado e obtido, e em quais pontos ocorreram divergências e seus motivos.

Também ocorrerá um experimento com a montagem de um motor de corrente contínua que será executado em grupo (nmotor)

A nota final será calculada pela média das notas obtidas nas atividades:

Nota final = 0,6.
$$\left(\frac{\sum_{i=1...6} n_i}{6}\right)$$
 + 0,4. (nmotor)

Os alunos serão aprovados quando a Nota final for maior ou igual a 50.

Participantes cuja Nota final for inferior a 50 serão considerados reprovados.

A frequência mínima para aprovação deve ser maior ou igual a 75%.

BIBLIOGRAFIA BÁSICA (mínimo 03 títulos)

Bose, B.K. Modern Power Electronics and AC Drives- Prentice Hall, 2002

Rashid, M. H. Eletrônica de Potência: Dispositivos, Circuitos e Aplicações. 4ª ed. São Paulo: Pearson, 2014. 853.

Bim, E. Maquinas elétrica e acionamentos. Uma introdução. Editora Elsevier, São Paulo 2009

BIBLIOGRAFIA COMPLEMENTAR (mínimo 05 títulos)

Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, Prentice-Hall, Inc., 2001

STEPHAN, R. M. – Acionamento, Comando e Controle de Máquinas Elétricas, Ed. CiênciaModerna, 2013.

LEONHARD, W.; Control of Electrical Drives; Springer-Verlag, 1985, 341p.

PETRUZELLA, Frank.D. Motores eletricos e acionamentos. São Paulo: Bookman,2013.

Mohan, Ned. Maquinas Elétricas e Acionamentos: Curso Introdutório - Ed 01/205 LTC Atlas São Paulo.

Fitzgerald, A.E.; Kingsley, C.; Umans, S., Máquinas Elétricas: com Introdução à Eletrônica de Potência. Bookman. 2006.

Del Toro, V. Fundamentos de Máquinas Elétricas. LTC. 1994.

Professor da Disciplina: Cleverson Luiz da Silva Pinto.	
Assinatura:	
Chefe de Departamento ou Unidade equivalente:	
Assinatura:	